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Abstract. The quantum conductance of two kinds of carbon nanotube quantum dots (CNQD) composed
of (5,5) and (10,0) tubes, namely (10,0)/(5,5)/(10,0) and (5,5)/(10,0)/(5,5) with different quantum sizes,
are calculated. It is shown that for (10,0)/(5,5)/(10,0) CNQD, one on-resonant peak at the Fermi energy
exists only for special QD sizes, and the width of the conductance gap increases from 1.0 eV to 3.2 eV with
the increase of size. The positions of peaks around the Fermi energy are obtained by the electronic structure
of individual finite (5,5) tubes. We also find that the (5,5)/(10,0)/(5,5) CNQDs behave as a quantum dot,
and its localized QD states are different from that of the former CNQD because of the existence of the
interface states between (5,5)/(10,0) junctions. For (5,5)/(10,0)/(5,5) CNQD, there is no conductance
gap with QD’s size smaller than 7 layers, and the conductance peak around the interface quasilocalized
state −0.26 eV disappears with QD sizes larger than 23 layers. In addition, for the (5,5)/(10,0)/(5,5)
CNQD, the connection method can change the degree of electronic localization of intermediate (10,0)
tube.

PACS. 61.48.+c Fullerenes and fullerene-related materials – 71.20.Tx Fullerenes and related materials;
intercalation compounds – 72.80.Rj Fullerenes and related materials – 68.55.Ln Defects and impurities:
doping, implantation, distribution, concentration, etc.

1 Introduction

The continual miniaturization of electronic devices has al-
ways been a major driving force in the microelectronic in-
dustry. The ultimate goal is to synthesize devices as small
as possible, i.e. as small as a molecule or a cluster of atoms.
Molecularly perfect materials such as single-wall carbon
nanotubes (SWCNs) can provide new opportunities for
designing nanometer-sized electronic devices.

SWCN can be either metallic or semiconducting de-
pending on both the diameter and chirality, which can be
uniquely determined by the chiral vector (n,m), where n
and m are integers [1]. If two nanotubes (one semiconduct-
ing and the other metallic) are connected, a heterojunc-
tion is formed which can act as a rectifying diode. Such
two-terminal heterojunctions or rectifying diodes were
first postulated theoretically [2], and recently observed in
experiments [3,4]. Transport measurements performed in
SWCNs, which were deposited on metallic contacts [5,6],
have given evidences of resonant tunnelling through quan-
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tized energy levels. Such reports stimulated several the-
oretical models of CNQDs. Recently, carbon nanotube
Y-junctions were produced by Li et al. [7], and theoreti-
cally studied by [8]. These tubular heterostructures called
intramolecular heterojunctions (IMJs) offer new perspec-
tives for nanoelectronic technology. Chico et al. [9] first
proposed that a quantum dot can be obtained by combin-
ing two carbon-nanotube metal-semiconductor junctions,
which behaves as an ideal zero-dimensional device. Both
the discrete nature and the spatial localization of the (5,5)
tube-derived states unambiguously demonstrate quantum
confinement. Therefore, the (6,4)/(5,5)/(6,4) system be-
haves as a quantum dot, and is thus called a carbon
nanotube quantum dot (CNQD). The singular electronic
properties of CNQDs may be important in future nano-
electronics, since a CNQD with metallic contacts could
behave as a one-electron transistor, and Coulomb block-
ade effects due to occupation of these strongly localized
discrete levels are expected. So it could be envisioned to
integrate an electronic circuit of nanotube based architec-
ture, where multi-terminal junctions or nodes have multi-
functional logic characteristics. However, the detailed
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calculation of electron transport phenomenon through
IMJs which include the influences of structure and size
are required.

In this work, we have performed calculations of
the electronic structure and quantum conductance of
the (10,0)/m(5,5)/(10,0) CNQD, which is different from
the (6,4)/(5,5)/(6,4) QDs studied by Chico et al. [9].
The size dependence of the QD states is investigated,
as required for the design of a quantum device. Fur-
thermore, we studied another type of CNQD, namely
M/S/M (5,5)/m(10,0)/(5,5), which has three different
topological configurations. The section between two semi-
infinite SWCNs can be considered as one quantum dot.
We also studied their general quantum characteristics, to-
gether with the dependence of the number and localiza-
tion of bound states on the size of QDs. We adopted a
tight-binding Hamiltonian and followed the single-particle
Green’s function formalism to obtain LDOS within real-
space renormalization techniques [10,11]. Given that elec-
tron transport on the molecular scale has become a topic
of intense applications, we also calculated the conductance
of CNQDs adopting the Landauer-Kubo formalism [12].
This work is organized as follows: in Section 2, we present
the theoretical method. In Section 3, we proceed with the
numerical calculations, and give discussions. Finally, the
summary is given in Section 4.

2 Theoretical method

We perform the calculation of the local density of states
(LDOS) and quantum conductance to characterize the
electronic properties within a tight binding description of
the carbon bonds. We use the following Hamiltonian

H =
∑

〈i,j〉,s
Vppπ

(
C+

i,sCj,s + Ci,sC
+
j,s

)
, (1)

where
∑

〈i,j〉 is restricted to nearest-neighbor atoms, and
Vppπ = −2.75 eV is the two-center hopping integral. On-
site energies are set to zero, therefore the Fermi energy EF

is zero. All the hopping parameters are equal, independent
of the bond length, curvature, or any rearrangement due
to the presence of defects. Therefore, the changes are solely
induced by the alterations in the topology of the hexagonal
rolled lattice.

The metallic contacts are realized by two different
carbon nanotube (CNs) in order to investigate their roles
in the conductance. Electronic correlations are neglected
in this simple calculation, although they are relevant
for a proper description of confined systems such as the
proposed quantum dots. Since we consider a real-space
Hamiltonian, the details of the atomic arrangement of the
junction may be completely incorporated through an ad-
equate microscopic description. Surface Green’s functions
for the semi-infinite CNs are calculated through the solu-
tion of matrix-like Dyson equations obtained by successive
decimations of unit cells. The average LDOS at ring j
and energy E is given by ρj(E) = −1/(πnj)ImTrGj,j(E),

where Tr stands for the trace over the nj carbon atoms
of ring j, and Gj,j(E) refers to the Green’s function at
ring j. Let us consider a heterojunction C connected to
two semi-infinite SWCNTs. The conductance is most
conveniently solved using the Green’s function matching
(GFM) method. A fundamental result in the theory of
electronic transport is that the conductance through a
region of interacting electrons is related to the scattering
properties of the region itself via the Landauer formula:
T = (2e2/h)T , where T is the conductance, and T the
transmission function is expressed as such

T = Tr (ΓLGr
CΓRGa

C) . (2)

Gr,a
C represent the retarded and advanced Green’s

function of the heterojunction, respectively, and ΓL,R

represents the couplings of the heterojunction to the left
and right SWCNTs, respectively. The Green’s function
(GC) as a function of energy E is defined as

GC = (E − HC − ΣL − ΣR)−1, (3)

where ΣL,R are the self-energy terms due to the semi-
infinite SWCNTs, and HC is the Hamiltonian of the
heterojunction. The self-energy terms also define the
coupling Γ through the following relation:

ΓL,R = i
[
Σr

L,R − Σa
L,R

]
. (4)

In turn, the self-energy terms are calculated with a
previously published surface Green’s function matching
technique [13].

3 Results and discussion

First, we calculate the electronic properties and quantum
conductance of a single (5,5)/(10,0) interface. To confirm
the resonant behavior of the system, we plot both quan-
tum conductance and the local density of electronic states
(LDOS) together in Figure 1. The energy range of inter-
est is from −0.45 eV to 0.45 eV around the semiconduc-
tor gap of the infinite (10,0) tube. The quantum conduc-
tance gap of the interface (5,5)/(10,0) is from −1.6 eV to
1.6 eV as determined by the (5,5) tube, which is larger
than the band gap of the semiconducting segment (about
1 eV). The larger conductance gap is due to the mis-
match in the conducting states of the (5,5) and (10,0)
segments. The presence of 5–7 defect leads to a differ-
ent LDOS for the conduction and valence bands. Even
though one sharp peak in the LDOS for the (5,5)/(10,0)
interface, is observed in the gap region, there is no peak in
the gap region of quantum conductance. This shows that
the interface quasilocalized states are off-resonance states.
The basic characteristics of the LDOS and quantum con-
ductance are in agreement with the results of Rochefort
et al. [14], where they studied the quantum size effect of fi-
nite (5,5)/(10,0) junction between two gold leads using the
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Fig. 1. The local density of electronic states and quantum
conductance of single (5,5)/(10,0) junction.

extended Huckel (EH) model. Next, let us study the quan-
tum size effect of the quantum conductance and LDOS in
CNQD for the two types of above-mentioned structures.

3.1 (10,0)/(5,5)/(10,0) CNQD

We now proceed to investigate the S/M/S
(10,0)/(5,5)/(10,0) CNQD on the bases of the SWCN
heterostuctures [15]. In Figure 2, the smallest interme-
diate (5,5) tube has only 20 atoms. The number of QD
atoms is gradually increased to 350 using 10 atoms per
layer. The first 10 atoms added to the QD are taken as
layer a, and the second 10 atoms are taken as layer b.
Contiguously adding two layers a and b corresponds to
adding a unit cell to the (5,5) SWNT. The four special
quantum-sized structures of the intermediate (5,5) QD
are presented in Figure 2, in which three layers a + b + a
are added from 20 atoms to 110 atoms.

Before investigating the LDOS of the CNQD, we first
show the electronic structure of individual tube (5,5) with
different finite length. Through exact diagonalization of
Hamiltonian, the relation of the gap between the highest

Fig. 2. Some structures of (10,0)/(5,5)/(10,0) QD with 3 ×
m + 2 layers.

Fig. 3. The gap between HOMO and LUMO of individual
finite (5,5) tubes with increasing lengths.

occupied molecular orbital (HOMO) and lowest unoccu-
pied molecular orbital (LUMO) of the (5,5) tube is plotted
with increasing tube length in Figure 3. Physically, as we
know, the band structure of armchair nanotubes consists
of two non-degenerate bands which cross the Fermi level at
k = 2π/3a0, with lattice constant a0. The wave vector k
for finite tube samples is in units of 2π/L, where L is
the nanotube length. Clearly, only when L = 3Na0 (with
integer N) can one probe the Fermi level exactly where
the two bands overlap. In Figure 3, we observe similar re-
sults. However, the peak at the Fermi energy EF = 0 eV
is only for sizes (called the fist type of size), which have
3 × m + N0 layers with integer m, and N0 = 2 mean-
ing the unit cell for the (5,5) tube. For other quantum-
sizes (called the second type of size), there is no peak
at the Fermi level, which is also consistent with previous
studies of the band gap for finite-length armchair nan-
otubes [16,17]. Furthermore, from Figure 3, it is found
that with increasing the tube length becoming longer, the
peaks simply crowd toward E = 0, and for the second
type size its gap decreases.
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Fig. 4. The quantum conductance of (10,0)/m(5,5)/(10,0)
CNQD with increasing size: (a) The changes of the peak po-
sitions in the conductance gap. (b) The variation of quantum
conductance gap of (10,0)/(5,5)/(10,0) CNQD.

Next we carry out the calculation to study the depen-
dence of the quantum conductance on quantum-size in
this type of CNQD. We analyze the results of LDOS in
CNQD with different sizes. The basic resonant character-
istics of the CNQD have similar relation with size, i.e.,
only for the first type size is there a peak at the Fermi
energy in the LDOS of CNQD. However, the results in
(6,4)/(5,5)/(6,4) CNQD [9] did not show the characteris-
tic that the resonant peak at the Fermi level periodically
appears with increasing QD’s size. Comparing the LDOS
of CNQD with the energy levels of individual (5,5) tube,
it is found that the positions of the peaks in LDOS of
CNQD are not symmetric around E = 0 eV, which is due
to the fact that topological defects break the electron-hole
symmetry.

We now investigate the tunnelling peak in quantum
conductance of the CNQD. In fact, two remarkable fea-
tures are found in Figure 4: first, the number of peaks
in the energy range of the (10,0) tube semiconductor gap
varies with different sizes. With larger CNQD, the number

Fig. 5. The decrease in the height of the conductance peak at
the Fermi energy of the (10,0)/(5,5)/(10,0) QD as a function
of increasing size, and the second-order exponential decay fit
to the height of peaks.

of peaks gradually increases in this region. Furthermore,
the resonant tunnelling peak at the Fermi energy in the
conductance only occurs for the first type sizes shown in
Figure 2. Second, the conductance gap of CNQD increases
with increasing QD size. The first characteristic could be
associated with the electronic properties of the (5,5) tube.
As discussed above, the number of energy levels in the in-
teresting energy region increase with increasing QD size.
The series of quantum states stemming from energy levels
of the (5,5) tube are intermingled, such that the states
would manifest themselves as a resonance. The second
characteristic can be understood by considering that the
number of discrete states increases with increasing tube
length. The number of the resonant states originating from
intermingling between the discrete states stemming from
energy levels of two (5,5) tube and (10,0) tube obviously
increases and approaches the number of resonant states
of the (5,5)/(10,0) junction. From Figure 4, one can see
that even for very large size, the gap width still has cer-
tain features; namely the oscillation varies with the thick-
ness of layer, and the gap width tends to the constant
value of 3.2 eV when the QD’s size is larger than about
30 layers.

In Figure 5, it is shown that the quantum conduc-
tance peak at the Fermi energy decreases exponentially
with increasing number of layers (30 atoms per layer).
The limiting value of the decay of the peak at Fermi en-
ergy is 5.69 × 10−2(2e2/h). The CNQDs with the first
type quantum-size are on-resonance devices at the Fermi
energy.

Following to the discussion above, it is possible that
the number and positions of the resonant peaks in conduc-
tance gap may be obtained from the electronic structure
of the individual intermediate (5,5) tubes. The quantum
conductance of CNQD with larger size is illustrated in Fig-
ure 6. It is found that in the conductance gap, the peaks
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Fig. 6. The quantum conductance and LDOS of (10,0)/(5,5)/(10,0) CNQD, as well as the energy level of individual finite (5,5)
tube with various sizes: (a) layers = 33, (b) layers = 34, (c) layers = 35. The dotted lines are LDOS and the vertical solid lines
are energy levels.

around the Fermi energy nearly correspond to the relative
energy levels, and those far from the Fermi energy deviate
a little from the relative energy levels. This is obvious in
the case of larger sizes. In addition, with longer tube, the
distribution of energy levels are more uniform, and thus
the resonant peaks are distributed more uniformly in the
conductance gap, which is in agreement with the results
by Chico et al. [9].

3.2 (5,5)/(10,0)/(5,5) CNQD

We also proceed with the same numerical scheme for
M/S/M (5,5)/m(10,0)/(5,5) CNQDs, in which the (10,0)
tube has three methods of being connected to two semi-
infinite (5,5) tube leads as shown in Figure 7. The num-
ber of the CNQD atoms can be gradually added up to

Fig. 7. The three types of (10,0)/(5,5)/(10,0) QD of smallest
size, defined as QD (a), QD (b) and QD (c), respectively.

about 600 (40 atoms per layer). Among the three types
of (5,5)/m(10,0)/(5,5) CNQD, the structures (a) and (b)
have the same layers but different symmetry, and the
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Fig. 8. The quantum conductance and LDOS of (5,5)/(10,0)/(5,5) CNQD, as well as the energy levels of the individual finite
(10,0) tubes with various sizes: (a) layers = 12, (b) layers = 13, (c) layers = 29, (d) layers = 30. The dotted lines are LDOS
and the vertical solid lines are energy levels.

structure (c) has a different number of atoms to the for-
mer two structures. If the cell with 20 atoms is taken as
one layer, the structures (a) and (b) have an even number
of layers, while the structure (c) has an odd number of
layers. It is well known that the band structure of semi-
conductor zigzag nanotubes consists of a semiconductor
gap around the Fermi level for all wave vector k points.
However, for the finite (10,0) tube, the dangling cova-
lent π bonds at the ends of the finite (10,0) tubes give
rise to edge states at EF = 0 eV, which have at least two
degeneracies, and are different from the electronic proper-
ties of finite (5,5) tubes. With increasing tube length, the
energy levels gradually tend towards E = 0 eV. Only when
the finite (10,0) tube is rolled up into one ring without any
dangling bonds, do the edge states disappear. Therefore
the (5,5)/(10,0)/(5,5) CNQD will take on very different
resonant characteristics.

In Figure 8 we give the LDOS in the energy range
of interest from −1.6 eV to 1.6 eV for different sizes. It
is shown that there is no peak at the Fermi energy for
any size, which is different from that of (10,0)/(5,5)/(10,0)
CNQD. We also notice two features in the LDOS: First,
for CNQD(a) and CNQD(b) the peak positions and the
number of these localized QD states are nearly the same as
each others in the energy range −1.6 eV to 1.6 eV, and the
difference among them is only the peak height. However,
QD(c) has one layer less than the two former, and it has

a different number of localized states and different peak
positions.Second, one resonant peak around −0.26 eV al-
ways exists in the LDOS for all types of the CNQD of any
size. This is due to the fact that the peak is the first one
around Fermi energy and the highest among these peaks
in their conductance gap. In addition, we find that for
the LDOS of (5,5)/(10,0)junction shown in Figure 1, the
position of the localized interface state of the junction is
consistently around −0.26 eV. So this localized QD states
of (5,5)/(10,0)/(5,5) CNQD is mainly due to the interface
state of junction.

Next let us study the quantum size effect of the
CNQD. Comparing quantum conductances with LDOS,
one notices two remarkable features in Figures 8 and 9.
First, with small sizes, there are simultaneous conduc-
tance peaks at the peak positions of localized QD states
in the conductance gap, which are on-resonance. How-
ever, with size larger than 23 layers, the conductance peak
at −0.26 eV disappears, therefore the localized state at
−0.26 eV is off-resonance. For other localized states in the
LDOS, the resonance feature is more obvious for larger
QD. Second, compared with (10,0)/(5,5)/(10,0) CNQD,
this CNQD has no conductance gap when the QD’s size is
smaller than about 7 layers (20 atoms in one layer), which
must been taken into account in designing electronic de-
vices. With increasing size, the width of the conductance
gap and the number of resonance peaks in the gap both
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Fig. 9. The quantum conductance of (5,5)/(10,0)/(5,5)
CNQD with increasing of size: (a) The changes of the peak po-
sitions in the conductance gap, (b) The variation of the quan-
tum conductance gap of (10,0)/(5,5)/(10,0) CNQD.

gradually increase as shown in Figure 9. The width of the
conductance gap slightly oscillates with size, and the max-
imal width of gap is about 3.2 eV. Even though the inter-
mediate part of the CNQD is a semiconductor SWCNT,
the (5,5)/(10,0)/(5,5) system behaves like a quantum dot.
In the LDOS of the CNQDs (a), (b) and (c), with increas-
ing QD size, the localized states gradually tend towards
E = 0. Also the width between the two localized states
around the Fermi energy gradually approaches the limit-
ing value of about 0.90 eV, which is the semiconductor
gap of the (10,0) tube.

Using the same procedure as for (10,0)/(5,5)/(10,0)
CNQD, we analyze the possibility that the number and
position of the resonance peaks in conductance gap may
be obtained from the electronic structure of the individ-
ual intermediate (10,0) tube. In Figure 8 we found that
in the conductance gap, the peaks around the Fermi en-
ergy almost correspond to the energy levels except for the
interface state at −0.26 eV and the Fermi level, but for
those peaks far from the Fermi energy, the correspondence
is difficult. The feature is more obvious for larger sizes.

Finally, we analyze the influences of different connec-
tion methods on electronic properties of the CNQD. For
CNQDs (a) and (b) with the same size, the positions of all
the peaks are same, but the relative heights of peaks are
different. Since the peak height corresponds to the squared
amplitude of the wave function, a higher peak corresponds
to the stronger degree of localization of localized QD state.
Therefore the connection method can change the degree
of electronic localization of the intermediate (10,0) tube.

4 Conclusion

The quantum conductance of two kinds of carbon nan-
otube quantum dot (CNQD) composed of (5,5) and
(10,0) tubes, (10,0)/(5,5)/(10,0) and (5,5)/(10,0)/(5,5),
are calculated for different quantum sizes. It is shown
that one on-resonance peak at the Fermi energy of
(10,0)/(5,5)/(10,0) QD exists only for special QD sizes.
The conductance gap increases with increasing size, up to
3.2 eV. The positions of conductance peaks around Fermi
energy and the number of conductance peaks in conduc-
tance gap can be obtained by the electronic structure of
individual finite (5,5) tubes.

We also find that the (5,5)/(10,0)/(5,5) CNQD be-
haves as a quantum dot. Its localized QD states are dif-
ferent from that of the former due to the existence of the
interface state in the (5,5)/(10,0) junction. There is no
conductance gap when the QD size is less than 7 layers.
The conductance gap width oscillates slightly with size,
and the maximal width of gap is about 3.2 eV. There is
one conductance peak around the interface quasilocalized
state at −0.26 eV when size is smaller than 23 layers. In
the conductance gap, the positions of conductance peaks
around the Fermi energy can also be given by the elec-
tronic structure of individual finite (5,5) tube, however,
the positions and the number of other conductance peaks
far away the Fermi energy can not be evaluated from the
energy levels. The connection method can change the de-
gree of electronic localization of intermediate (10,0) tubes.

We thank Prof. Weicheng Huang for his contributions to the
later discussion about this work.
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